2 research outputs found

    Cultivating Agrobiodiversity in the U.S.: Barriers and Bridges at Multiple Scales

    Get PDF
    The diversity of crops grown in the United States (U.S.) is declining, causing agricultural landscapes to become more and more simplified. This trend is concerning for the loss of important plant, insect, and animal species, as well as the pollution and degradation of our environment. Through three separate but related studies, this dissertation addresses the need to increase the diversity of these agricultural landscapes in the U.S., particularly through diversifying the type and number of crops grown. The first study uses multiple, openly accessible datasets related to agricultural land use and policies to document and visualize change over recent decades. Through this, I show that U.S. agriculture has gradually become more specialized in the crops grown, crop production is heavily concentrated in certain areas, and crop diversity is continuing to decline. Meanwhile, federal agricultural policy, while having become more influential over how U.S. agriculture operates, incentivizes this specialization. The second study uses nonlinear statistical modeling to identify and compare social, political, and ecological factors that best predict crop diversity across nine regions in the U.S. Factors of climate, prior land use, and farm inputs best predict diversity across regions, but regions show key differences in how factors are important, indicating that patterns at the regional scale constrain and enable further diversification. Finally, the third study relied on interviews with farmers and key informants in southern Idaho’s Magic Valley – a cluster of eight counties that is known to be agriculturally diverse. Interviews gauge what farmers are currently doing to manage crop diversity (the present) and how they imagine alternative landscapes (the imaginary). We found that farmers in the Magic Valley manage current diversity mainly through cover cropping and diverse crop rotations, but daily struggles and political barriers make experimenting with and imagining alternative landscapes difficult and unlikely to occur. Together, these three studies provide an integrated view of how and why U.S. agriculture landscapes simplify or diversify, as well as the barriers and bridges such pathways of diversification

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore